By Topic

A Satisficing Approach to Aircraft Conflict Resolution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Archibald, J.K. ; Dept. of Electr. & Comput. Eng., Brigham Young Univ., Provo, UT ; Hill, J.C. ; Jepsen, N.A. ; Stirling, W.C.
more authors

Future generations of air traffic management systems may give appropriately equipped aircraft the freedom to change flight paths in real time. This would require a conflict avoidance and resolution scheme that is both decentralized and cooperative. We describe a multiagent solution to aircraft conflict resolution based on satisficing game theory. A key feature of the theory is that satisficing decision makers form their preferences by taking into consideration the preferences of others, unlike conventional game theory that models agents that maximize self-interest metrics. This makes possible situational altruism, a sophisticated form of unselfish behavior in which the preferences of another agent are accommodated provided that the other agent will actually take advantage of the sacrifice. This approach also makes possible the creation of groups in which every decision maker receives due consideration. We present simulation results from a variety of scenarios in which the aircraft are limited to constant-speed heading-change maneuvers to avoid conflicts. We show that the satisficing approach results in behavior that is attractive both in terms of safety and performance. The results underscore the applicability of satisficing game theory to multiagent problems in which self-interested participants are inclined to cooperation.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:38 ,  Issue: 4 )