By Topic

Sensor Fusion for Compliant Robot Motion Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Force feedback is necessary for accurate force control in robotic manipulators, and thus far, wrist force/torque (F/T) sensors have been used. But an important problem arises when only these types of sensors are used. In a dynamic situation where the manipulator moves in either free or constrained space, the interaction forces and moments at the contact point and also the noncontact ones are measured by the mentioned sensor. In this paper, an estimator based on a sensor fusion strategy integrating the measurements of three different sensors (a wrist F/T sensor, an inertial sensor, and joint sensors) was developed to determine the contact force and torque exerted by the manipulator to its environment. The resulting observer helps to overcome some difficulties of uncertain world models and unknown environments since it reduces the high-frequency and low-frequency spectral contents, i.e., the low-frequency component due to inertia of a heavy tool mass and the high-frequency component due to impacts. The new improvement was experimentally validated in a force/position impedance control loop applied to a Staubli RX60 industrial robotic platform.

Published in:

Robotics, IEEE Transactions on  (Volume:24 ,  Issue: 2 )