By Topic

Fuzzy Regression Analysis by Support Vector Learning Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pei-Yi Hao ; Nat. Kaohsiung Univ. of Appl. Sci., Kaohsiung ; Jung-Hsien Chiang

Support vector machines (SVMs) have been very successful in pattern classification and function approximation problems for crisp data. In this paper, we incorporate the concept of fuzzy set theory into the support vector regression machine. The parameters to be estimated in the SVM regression, such as the components within the weight vector and the bias term, are set to be the fuzzy numbers. This integration preserves the benefits of SVM regression model and fuzzy regression model and has been attempted to treat fuzzy nonlinear regression analysis. In contrast to previous fuzzy nonlinear regression models, the proposed algorithm is a model-free method in the sense that we do not have to assume the underlying model function. By using different kernel functions, we can construct different learning machines with arbitrary types of nonlinear regression functions. Moreover, the proposed method can achieve automatic accuracy control in the fuzzy regression analysis task. The upper bound on number of errors is controlled by the user-predefined parameters. Experimental results are then presented that indicate the performance of the proposed approach.

Published in:

IEEE Transactions on Fuzzy Systems  (Volume:16 ,  Issue: 2 )