By Topic

Terahertz Sources Based on Intracavity Parametric Down-Conversion in Quasi-Phase-Matched Gallium Arsenide

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)

We have efficiently generated tunable terahertz (THz) radiation using intracavity parametric down-conversion in gallium arsenide (GaAs). We used three types of microstructured GaAs to quasi-phase-match the interaction: optically contacted, orientation-patterned, and diffusion-bonded GaAs. The GaAs was placed in an optical parametric oscillator (OPO) cavity, and the THz wave was generated by difference-frequency mixing between the OPO signal and idler waves. The OPO used type-II phase-matched periodically poled lithium niobate as a gain medium and was synchronously pumped by a mode-locked laser at 1064 nm (7 ps and 200 nJ at 50 MHz). With center frequencies spanning 0.4-3.5 THz, 250-GHz bandwidth radiation was generated. We measured two orders of optical cascading generated by the mixing of optical and THz waves. In a doubly resonant oscillator (DRO) configuration, the efficiency increased by 21times over the singly resonant oscillator performance with an optical-to-THz efficiency of 10-4 and average THz power of 1 mW. The GaAs stabilized the DRO by a thermooptic feedback mechanism that created a quasi- continuous-wave train of THz pulses.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:14 ,  Issue: 2 )