By Topic

A Mixed Reality Approach for Merging Abstract and Concrete Knowledge

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
John Quarles ; Dept. of CISE, University of Florida, email: ; Samsun Lampotang ; Ira Fischler ; Paul Fishwick
more authors

Mixed reality's (MR) ability to merge real and virtual spaces is applied to merging different knowledge types, such as abstract and concrete knowledge. To evaluate whether the merging of knowledge types can benefit learning, MR was applied to an interesting problem in anesthesia machine education. The virtual anesthesia machine (VAM) is an interactive, abstract 2D transparent reality simulation of the internal components and invisible gas flows of an anesthesia machine. It is widely used in anesthesia education. However when presented with an anesthesia machine, some students have difficulty transferring abstract VAM knowledge to the concrete real device. This paper presents the augmented anesthesia machine (AAM). The AAM applies a magic-lens approach to combine the VAM simulation and a real anesthesia machine. The AAM allows students to interact with the real anesthesia machine while visualizing how these interactions affect the internal components and invisible gas flows in the real world context. To evaluate the AAM's learning benefits, a user study was conducted. Twenty participants were divided into either the VAM (abstract only) or AAM (concrete+abstract) conditions. The results of the study show that MR can help users bridge their abstract and concrete knowledge, thereby improving their knowledge transfer into real world domains.

Published in:

2008 IEEE Virtual Reality Conference

Date of Conference:

8-12 March 2008