Cart (Loading....) | Create Account
Close category search window
 

Implementation of Pipelined FastICA on FPGA for Real-Time Blind Source Separation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kuo-Kai Shyu ; Dept. of Electr. Eng., Nat. Central Univ., Jhongli ; Ming-Huan Lee ; Yu-Te Wu ; Po-Lei Lee

Fast independent component analysis (FastICA) algorithm separates the independent sources from their mixtures by measuring non-Gaussian. FastICA is a common offline method to identify artifact and interference from their mixtures such as electroencephalogram (EEG), magnetoencephalography (MEG), and electrocardiogram (ECG). Therefore, it is valuable to implement FastICA for real-time signal processing. In this paper, the FastICA algorithm is implemented in a field-programmable gate array (FPGA), with the ability of real-time sequential mixed signals processing by the proposed pipelined FastICA architecture. Moreover, in order to increase the numbers precision, the hardware floating-point (FP) arithmetic units had been carried out in the hardware FastICA. In addition, the proposed pipeline FastICA provides the high sampling rate (192 kHz) capability by hand coding the hardware FastICA in hardware description language (HDL). To verify the features of the proposed hardware FastICA, simulations are first performed, then real-time signal processing experimental results are presented using the fabricated platform. Experimental results demonstrate the effectiveness of the presented hardware FastICA as expected.

Published in:

Neural Networks, IEEE Transactions on  (Volume:19 ,  Issue: 6 )

Date of Publication:

June 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.