By Topic

Antilock Brake System With a Continuous Wheel Slip Control to Maximize the Braking Performance and the Ride Quality

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Choi, S.B. ; Grad. Sch. of Automobile Technol., Korea Adv. Inst. of Sci. & Technol., Daejeon

In this paper, a new type of antilock brake system (ABS) algorithm is developed. A full-time feedback control algorithm differentiates the new ABS from rule-based conventional ABS algorithms. The rear wheels are controlled to create limit cycles around the peak friction slip points. From the cycling patterns of the rear wheels, the optimal slips are defined. The front wheels are controlled to track the optimal slips defined by monitoring the behaviors of the rear wheels. The new algorithm can be implemented on any production ABS hardware without any modification or extra sensors. The test results show significant performance improvement in both the stopping distance and the noise, vibration, and harshness on homogeneous surfaces, and also quick detection of surface transition. The robustness of the new ABS algorithm is proven by vehicle tests on various speeds, surfaces, and driving conditions.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:16 ,  Issue: 5 )