By Topic

Global Convergence and Limit Cycle Behavior of Weights of Perceptron

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

In this paper, it is found that the weights of a perceptron are bounded for all initial weights if there exists a nonempty set of initial weights that the weights of the perceptron are bounded. Hence, the boundedness condition of the weights of the perceptron is independent of the initial weights. Also, a necessary and sufficient condition for the weights of the perceptron exhibiting a limit cycle behavior is derived. The range of the number of updates for the weights of the perceptron required to reach the limit cycle is estimated. Finally, it is suggested that the perceptron exhibiting the limit cycle behavior can be employed for solving a recognition problem when downsampled sets of bounded training feature vectors are linearly separable. Numerical computer simulation results show that the perceptron exhibiting the limit cycle behavior can achieve a better recognition performance compared to a multilayer perceptron.

Published in:

IEEE Transactions on Neural Networks  (Volume:19 ,  Issue: 6 )