Cart (Loading....) | Create Account
Close category search window
 

A Scratch-Pad Memory Aware Dynamic Loop Scheduling Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ozturk, O. ; Bilkent Univ., Ankara ; Kandemir, M. ; Narayanan, S.H.K.

Executing array based applications on a chip multiprocessor requires effective loop parallelization techniques. One of the critical issues that need to be tackled by an optimizing compiler in this context is loop scheduling, which distributes the iterations of a loop to be executed in parallel across the available processors. Most of the existing work in this area targets cache based execution platforms. In comparison, this paper proposes the first dynamic loop scheduler, to our knowledge, that targets scratch-pad memory (SPM) based chip multiprocessors, and presents an experimental evaluation of it. The main idea behind our approach is to identify the set of loop iterations that access the SPM and those that do not. This information is exploited at runtime to balance the loads of the processors involved in executing the loop nest at hand. Therefore, the proposed dynamic scheduler takes advantage of the SPM in performing the loop iteration-to-processor mapping. Our experimental evaluation with eight array/loop intensive applications reveals that the proposed scheduler is very effective in practice and brings between 13.7% and 41.7% performance savings over a static loop scheduling scheme, which is also tested in our experiments.

Published in:

Quality Electronic Design, 2008. ISQED 2008. 9th International Symposium on

Date of Conference:

17-19 March 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.