By Topic

Process-Variation Statistical Modeling for VLSI Timing Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

SSTA requires accurate statistical distribution models of non-Gaussian random variables of process parameters and timing variables. Traditional quadratic Gaussian model has been shown to have some serious limitations. In particular, it limits the range of skewness that can be modeled and it can not model the kurtosis. In this paper, we presented complex-coefficient quadratic Gaussian polynomial model and higher order Gaussian polynomial model to resolve these difficulties. Experimental results show how our methods and new algorithms expose some enhancements in both accuracy and versatility.

Published in:

9th International Symposium on Quality Electronic Design (isqed 2008)

Date of Conference:

17-19 March 2008