By Topic

A Tunable Clock Buffer for Intra-die PVT Compensation in Single-Edge Clock (SEC) Distribution Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mueller, J. ; Univ. of British Columbia, Vancouver ; Saleh, R.

As processes shrink, the on-chip variability grows and this variation causes clock skew to rapidly consume a larger-and-larger percentage of the clock period. New techniques to reduce skew are required, but post-silicon clock adjustments will still be necessary to compensate for intra-die PVT variations. A relatively new technique for skew reduction, called Single-Edge Clocking (SEC), focuses clock buffer design on the critical edge by using alternating strong pull-up and strong pull-down buffers. In this paper, a new digitally-tuned buffer for SEC clock networks is presented. It is based on a single-sided starved inverter configuration and is tuned using a 3-bit thermometer code. Sizing issues and skew reduction achievable in the presence of PVT variations are presented. The overhead in terms of layout area and current consumption for this new tunable buffer is only a small fraction of other tunable buffer designs.

Published in:

Quality Electronic Design, 2008. ISQED 2008. 9th International Symposium on

Date of Conference:

17-19 March 2008