By Topic

Improving the Efficiency of Power Management Techniques by Using Bayesian Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hwisung Jung ; Univ. of Southern California, Los Angeles ; Pedram, M.

This paper presents a supervised learning based dynamic power management (DPM) framework for a multicore processor, where a power manager (PM) learns to predict the system performance state from some readily available input features (such as the state of service queue occupancy and the task arrival rate) and then uses this predicted state to look up the optimal power management action from a pre-computed policy lookup table. The motivation for utilizing supervised learning in the form of a Bayesian classifier is to reduce overhead of the PM which has to recurrently determine and issue voltage-frequency setting commands to each processor core in the system. Experimental results reveal that the proposed Bayesian classification based DPM technique ensures system-wide energy savings under rapidly and widely varying workloads.

Published in:

Quality Electronic Design, 2008. ISQED 2008. 9th International Symposium on

Date of Conference:

17-19 March 2008