Cart (Loading....) | Create Account
Close category search window
 

Interconnect Signaling and Layout Optimization to Manage Thermal Effects Due to Self Heating in On-Chip Signal Buses

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sundaresan, K. ; Sun Microsystems, Inc., Santa Clara ; Mahapatra, N.R.

Power dissipation in long interconnects and increasing wire temperatures due to (self) Joule heating are becoming important issues to address in nanometer-scale technologies. While many low-power bus encoding schemes have been proposed, no encoding techniques exist for explicitly reducing temperatures in high-speed on-chip signal buses. In this work, we propose: (1) an interconnect/wire signaling and layout optimization that considers self and inter-wire coupling activities and is tailored to data traffic characteristics; (2) an integer linear programming (ILP) technique to optimize bus energy and; (3) a novel methodology to add thermal constraints to this ILP optimization to reduce not only average but also peak wire temperatures. Our contributions enable a designer to efficiently explore the hottest wire temperature and total bus dynamic energy trade-off space. One such trade-off point yielded a thermally-constrained, energy-optimal encoding scheme that reduced wire temperatures by up to 12.26degC (12.96degC) for data (instruction) buses and significant average energy savings of 14.24% (16.17%) for data (instruction) bus. These results are still much better than energy reductions obtained by previous work.

Published in:

Quality Electronic Design, 2008. ISQED 2008. 9th International Symposium on

Date of Conference:

17-19 March 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.