By Topic

Uncorrelated Discriminant Locality Preserving Projections

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xuelian Yu ; Sch. of Electron. Eng., Univ. of Electron. Sci. & Technol. of China, Chengdu ; Xuegang Wang

In this letter, a new manifold learning algorithm, called uncorrelated discriminant locality preserving projections (UDLPP), is proposed. The aim of UDLPP is to preserve the within-class geometric structure, while maximizing the between-class distance. By introducing a simple uncorrelated constraint into the objective function, we show that the extracted features via UDLPP are statistically uncorrelated, which is desirable for many pattern analysis applications. Moreover, UDLPP can be performed in reproducing kernel Hilbert space, which gives rise to kernel UDLPP. Experimental results on both face recognition and radar target recognition demonstrate the effectiveness of the proposed algorithm.

Published in:

Signal Processing Letters, IEEE  (Volume:15 )