Cart (Loading....) | Create Account
Close category search window
 

Optimal Delay Estimation for Phase-Rotated Linearly Interpolative Channel Estimation in OFDM and OFDMA Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kun-Chien Hung ; Dept. of Electron. Eng., Nat. Chiao Tung Univ., Hsinchu ; Lin, D.W.

We consider the phase-rotated linearly interpolative channel estimation technique for multicarrier transmission. The technique models the channel frequency response between two nearby subcarriers as the product of a linear function and a linear-phase factor, where the linear-phase factor may be equivalently modeled in the time domain as a reference delay dubbed the anchor delay in this work. We show that the performance of the technique is a fourth-order function of the channel path delays and the anchor delay. We derive a method to estimate the optimal anchor delay. Analysis and simulation in a context of Mobile WiMAX downlink transmission show that, with the proposed anchor delay estimate, we can attain better performance in channel estimation than conventional linear interpolation and a previously proposed method of phase-compensated linear interpolation.

Published in:

Signal Processing Letters, IEEE  (Volume:15 )

Date of Publication:

2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.