By Topic

Anonymization by Local Recoding in Data with Attribute Hierarchical Taxonomies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jiuyong Li ; Univ. of South Australia, Adelaide, SA ; Wong, R.C.-W. ; Fu, A.W.-C. ; Jian Pei

Individual privacy will be at risk if a published data set is not properly deidentified. k-anonymity is a major technique to de-identify a data set. Among a number of k-anonymization schemes, local recoding methods are promising for minimizing the distortion of a k-anonymity view. This paper addresses two major issues in local recoding k-anonymization in attribute hierarchical taxonomies. First, we define a proper distance metric to achieve local recoding generalization with small distortion. Second, we propose a means to control the inconsistency of attribute domains in a generalized view by local recoding. We show experimentally that our proposed local recoding method based on the proposed distance metric produces higher quality k-anonymity tables in three quality measures than a global recoding anonymization method, Incognito, and a multidimensional recoding anonymization method, Multi. The proposed inconsistency handling method is able to balance distortion and consistency of a generalized view.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:20 ,  Issue: 9 )