By Topic

Perceptually Guided Polygon Reduction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Qu, Lijun ; Dept. of Comput. Sci. & Eng., Univ. of Minnesota, Minneapolis, MN ; Meyer, Gary W.

The properties of the human visual system are taken into account, along with the geometric aspects of an object, in a new surface remeshing algorithm and a new mesh simplification algorithm. Both algorithms have a preprocessing step and are followed by the remeshing or mesh simplification steps. The preprocessing step computes an importance map that indicates the visual masking potential of the visual patterns on the surface. The importance map is then used to guide the remeshing or mesh simplification algorithms. Two different methods are proposed for computing an importance map that indicates the masking potential of the visual patterns on the surface. The first one is based on the Sarnoff visual discrimination metric, and the second one is inspired by the visual masking tool available in the current JPEG2000 standard. Given an importance map, the surface remeshing algorithm automatically distributes few samples to surface regions with strong visual masking properties due to surface texturing, lighting variations, bump mapping, surface reflectance and inter-reflections. Similarly, the mesh simplification algorithm simplifies more aggressively where the light field of an object can hide more geometric artifacts.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:14 ,  Issue: 5 )