By Topic

Automated Hierarchical Density Shaving: A Robust Automated Clustering and Visualization Framework for Large Biological Data Sets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gunjan Gupta ; University of Texas at Austin ; Alexander Liu ; Joydeep Ghosh

A key application of clustering data obtained from sources such as microarrays, protein mass spectroscopy, and phylogenetic profiles is the detection of functionally related genes. Typically, only a small number of functionally related genes cluster into one or more groups, and the rest need to be ignored. For such situations, we present Automated Hierarchical Density Shaving (Auto-HDS), a framework that consists of a fast hierarchical density-based clustering algorithm and an unsupervised model selection strategy. Auto-HDS can automatically select clusters of different densities, present them in a compact hierarchy, and rank individual clusters using an innovative stability criteria. Our framework also provides a simple yet powerful 2D visualization of the hierarchy of clusters that is useful for further interactive exploration. We present results on Gasch and Lee microarray data sets to show the effectiveness of our methods. Additional results on other biological data are included in the supplemental material.

Published in:

IEEE/ACM Transactions on Computational Biology and Bioinformatics  (Volume:7 ,  Issue: 2 )