Cart (Loading....) | Create Account
Close category search window

A Recovery Algorithm of Linear Complexity in the Time-Domain Layered Finite Element Reduction Recovery (LAFE-RR) Method for Large-Scale Electromagnetic Analysis of High-Speed ICs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gan, H. ; Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN ; Dan Jiao

Time-domain layered finite element reduction recovery (LAFE-RR) method was recently developed for large-scale electromagnetic analysis of high-speed integrated circuits (ICs). This method is capable of analytically and rigorously reducing the system matrix of a 3-D multilayer circuit to that of a single-layer one regardless of the original problem size. In addition, the reduced system matrix preserves the sparsity of the original system matrix. In this paper, an efficient algorithm is proposed to recover the volume unknowns in the time-domain LAFE-RR method. This algorithm constitutes a direct solution of the matrix formed by volume unknowns in each layer. This direct solution possesses a linear complexity in both central processing unit (CPU) time and memory consumption. The cost of matrix inversion is negligible. The cost of matrix solution scales linearly with the matrix size. Numerical and experimental results have demonstrated the accuracy and efficiency of the proposed algorithm.

Published in:

Advanced Packaging, IEEE Transactions on  (Volume:31 ,  Issue: 3 )

Date of Publication:

Aug. 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.