By Topic

The Vegetation Outlook (VegOut): A New Tool for Providing Outlooks of General Vegetation Conditions Using Data Mining Techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tsegaye Tadesse ; Nebraska Univ. Lincoln, Lincoln ; Brian Wardlow

The integration of climate, satellite, ocean, and biophysical data holds considerable potential for enhancing our drought monitoring and prediction capabilities beyond the tools that currently exist. Improvements in meteorological observations and prediction methods, increased accuracy of seasonal forecasts using oceanic indicators, and advancements in satellite-based remote sensing have greatly enhanced our capability to monitor vegetation conditions and develop better drought early warning and knowledge-based decision support systems. In this paper, a new prediction tool called the Vegetation Outlook (VegOut) is presented. The VegOut integrates climate, oceanic, and satellite-based vegetation indicators and utilizes a regression tree data mining technique to identify historical patterns between drought intensity and vegetation conditions and predict future vegetation conditions based on these patterns at multiple time steps (2-, 4-, and 6-week outlooks). Cross-validation (withholding years) revealed that the seasonal VegOut models had relatively high prediction accuracy. Correlation coefficient (R ) values ranged from 0.94 to 0.98 for 2-week, 0.86 to 0.96 for 4-week, and 0.79 to 0.94 for 6-week predictions. The spatial patterns of predicted vegetation conditions also had relatively strong agreement with the observed patterns from satellite at each of the time steps evaluated.

Published in:

Seventh IEEE International Conference on Data Mining Workshops (ICDMW 2007)

Date of Conference:

28-31 Oct. 2007