By Topic

A Comparative Study of Methods for Transductive Transfer Learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Arnold, A. ; Carnegie Mellon Univ., Pittsburgh ; Nallapati, Ramesh ; Cohen, W.W.

The problem of transfer learning, where information gained in one learning task is used to improve performance in another related task, is an important new area of research. While previous work has studied the supervised version of this problem, we study the more challenging case of unsupervised transductive transfer learning, where no labeled data from the target domain are available at training. We describe some current state-of-the-art inductive and transductive approaches and then adapt these models to the problem of transfer learning for protein name extraction. In the process, we introduce a novel maximum entropy based technique, iterative feature transformation (IFT), and show that it achieves comparable performance with state-of-the-art transductive SVMs. We also show how simple relaxations, such as providing additional information like the proportion of positive examples in the test data, can significantly improve the performance of some of the transductive transfer learners.

Published in:

Data Mining Workshops, 2007. ICDM Workshops 2007. Seventh IEEE International Conference on

Date of Conference:

28-31 Oct. 2007