By Topic

HSN-PAM: Finding Hierarchical Probabilistic Groups from Large-Scale Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

Real-world social networks are often hierarchical, re- flecting the fact that some communities are composed of a few smaller, sub-communities. This paper describes a hierarchical Bayesian model based scheme, namely HSN- PAM (Hierarchical Social Network-Pachinko Allocation Model), for discovering probabilistic, hierarchical com- munities in social networks. This scheme is powered by a previously developed hierarchical Bayesian model. In this scheme, communities are classified into two categories: super-communities and regular-communities. Two differ- ent network encoding approaches are explored to evaluate this scheme on research collaborative networks, including CiteSeer and NanoSCI. The experimental results demon- strate that HSN-PAM is effective for discovering hierarchi- cal community structures in large-scale social networks.

Published in:

Data Mining Workshops, 2007. ICDM Workshops 2007. Seventh IEEE International Conference on

Date of Conference:

28-31 Oct. 2007