By Topic

Exploring Variability and Performance in a Sub-200-mV Processor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

12 Author(s)
Hanson, S. ; Univ. of Michigan, Ann Arbor ; Bo Zhai ; Mingoo Seok ; Cline, B.
more authors

In this study, we explore the design of a subthreshold processor for use in ultra-low-energy sensor systems. We describe an 8-bit subthreshold processor that has been designed with energy efficiency as the primary constraint. The processor, which is functional below Vdd=200 mV, consumes only 3.5 pJ/inst at Vdd=350 mV and, under a reverse body bias, draws only 11 nW at Vdd=160 mV. Process and temperature variations in subthreshold circuits can cause dramatic fluctuations in performance and energy consumption and can lead to robustness problems. We investigate the use of body biasing to adapt to process and temperature variations. Test-chip measurements show that body biasing is particularly effective in subthreshold circuits and can eliminate performance variations with minimal energy penalties. Reduced performance is also problematic at low voltages, so we investigate global and local techniques for improving performance while maintaining energy efficiency.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:43 ,  Issue: 4 )