By Topic

Modeling of bulk acoustic wave devices built on piezoelectric stack structures: Impedance matrix analysis and network representation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhang, V.Y. ; Inst. d''Electron., de Microelectron., et de Nanotechnol. (IEMN), Villeneuve-d''Ascq ; Dubus, B. ; Lefebvre, J.E. ; Gryba, T.

The fundamental electro-acoustic properties of a solid layer are deduced in terms of its impedance matrix (Z) and represented by a network for modeling the bulk acoustic wave devices built on piezoelectric stacked structures. A piezoelectric layer is described by a three-port equivalent network, a nonpiezoelectric layer, and a short- or open-circuit piezoelectric layer by a two-port one. Electrical input impedance of the resonator is derived in terms of the Z-matrix of both the piezoelectric layer and an external load, the unique expression applies whether the resonator is a mono- or electroded-layer or a solidly mounted resonator (SMR). The loading effects of AZ-electrodes on the resonating frequencies of the piezoelectric ZnO-layer are analyzed. Transmission and reflection properties of Bragg mirrors are investigated along with the bulk radiation in SMR. As a synthesizing example, a coupled resonator filter (CR.F) is analyzed using the associated two-port equivalent network and by calculating the power transmission to a 50 Omega-load. The stacked crystal filter is naturally included in the model as a special case of CRF. Combining a comprehensive matrix analysis and an instructive network representation and setting the problem with a full vectorial formalism are peculiar features of the presented approach.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:55 ,  Issue: 3 )