By Topic

Semisupervised Image Classification With Laplacian Support Vector Machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gomez-Chova, L. ; Dept. of Electron. Eng., Valencia Univ., Valencia ; Camps-Valls, G. ; Munoz-Mari, J. ; Calpe, J.

This letter presents a semisupervised method based on kernel machines and graph theory for remote sensing image classification. The support vector machine (SVM) is regularized with the unnormalized graph Laplacian, thus leading to the Laplacian SVM (LapSVM). The method is tested in the challenging problems of urban monitoring and cloud screening, in which an adequate exploitation of the wealth of unlabeled samples is critical. Results obtained using different sensors, and with low number of training samples, demonstrate the potential of the proposed LapSVM for remote sensing image classification.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:5 ,  Issue: 3 )