By Topic

3D structure inference by integrating segmentation and reconstruction from a single image

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lin, L. ; Sch. of Inf. Sci. & Technol., Beijing Inst. of Technol., Beijing ; Zeng, K. ; Wang, Y. ; Hu, W.

The authors present a hierarchical Bayesian method for inferring the 3D structure of polyhedral man-made objects from a single image by integrating 2D image parsing and 3D reconstruction. In the first stage, the image is parsed into its constituent components - arbitrary shape regions and polygonal shape regions. In the second stage, polygonal shape regions are grouped into man-made polyhedral objects. The 3D structures of these polyhedral objects are further inferred using geometric priors. These two stages are integrated into a Bayesian inference scheme and cooperate to compute the optimal solutions. This method enables the model to correct possible errors and explain ambiguities in the lower level with the help of information from the higher level. The algorithm is applied to the images of indoor scenes, and the experimental results demonstrate satisfactory performance.

Published in:

Computer Vision, IET  (Volume:2 ,  Issue: 1 )