By Topic

A 24-GHz Receiver Frontend With an LO Signal Generator in 0.18- \mu m CMOS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yu-Hsin Chen ; Grad. Inst. of Commun. Eng., Nat. Taiwan Univ., Taipei ; Hsieh-Hung Hsieh ; Liang-Hung Lu

Utilizing a standard 0.18-mum CMOS process, a receiver frontend and a local oscillator (LO) module are implemented for RF applications at the 24-GHz industrial, scientific, medical band. The proposed frontend is composed of a three-stage low-noise amplifier, a down-conversion mixer, and IF amplifiers. With an IF frequency of 4.82 GHz, the fabricated circuit demonstrates a conversion gain of 28.4 dB and a noise figure of 6.0 dB while maintaining an input return loss better than 14 dB. The measured P in - 1dB and IIP3 of the receiver frontend are -23.2 and -13.0 dBm, respectively. In addition, a circuit module, which generates the required dual down-conversion LO signals, is also included in this study. The proposed LO generator consists of a 19-GHz low-phase-noise voltage-controlled oscillator (VCO), a 4 : 1 frequency divider, and a quadrature phase-tuning circuit. From the measurement results, the VCO exhibits a tuning range of 850 MHz and a phase noise of -110 dBc/Hz at 1-MHz offset frequency. Operated at a supply voltage of 1.8 V, the current consumptions for the receiver frontend and the LO generator are both 30 mA.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:56 ,  Issue: 5 )