Cart (Loading....) | Create Account
Close category search window
 

Finite-Time Transport Structures of Flow Fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Modern experimental and computational fluid mechanics are increasingly concerned with the structure nature of fluid motion. Recent research has highlighted the analysis of one transport structure which is called Lagrangian coherent structure. However, the quantity nature of the flow transport is still unclear. In this paper, we focus on the transport characteristics of physical quantities and propose an approach to visualize the finite-time transport structure of quantity advection. This is similar to an integral convolution over a scalar field along path-lines of a flow field. Applied to a well-chosen set of physical quantity fields this yields structures giving insights into the dynamical processes of the underlying flow. We demonstrate our approach on a number of test data sets.

Published in:

Visualization Symposium, 2008. PacificVIS '08. IEEE Pacific

Date of Conference:

5-7 March 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.