By Topic

Analysis of the Effects of Fringing Electric Field on FinFET Device Performance and Structural Optimization Using 3-D Simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hui Zhao ; Nat. Univ. of Singapore, Singapore ; Yee-Chia Yeo ; Subhash C. Rustagi ; Ganesh Shankar Samudra

In this paper, the potential impact of parasitic capacitance resulting from fringing field on FinFET device performance is studied in detail using a 3-D simulator implemented with quantum-mechanical models. It was found that fringing field from gate to source contributes significantly to FinFET performance and speed. The strength of fringing field is closely related to device features such as gate-dielectric thickness, the spacer width, fin width and pitch, as well as the gate height. For undoped fin with underlapping (nonoverlapping source/drain) gate, a thinner spacer with higher kappa value enhances the gate control of short-channel effects (SCEs) and reduces the source-to-drain leakage current. Our results also suggest that reducing the high- gate-dielectric thickness is no longer an effective approach to improve performance in small FinFET devices due to the strong fringing effect. However, the introduction of thin metal gate in a multifin device was found beneficial to device speed without compromising on current drive and SCE.

Published in:

IEEE Transactions on Electron Devices  (Volume:55 ,  Issue: 5 )