Cart (Loading....) | Create Account
Close category search window
 

Spectral Relations for Multidimensional Complex Improper Stationary and (Almost) Cyclostationary Processes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wahlberg, Patrik ; Univ. of Newcastle, Callaghan ; Schreier, P.J.

We study continuous-time multidimensional wide- sense stationary (WSS) and (almost) cyclostationary processes in the frequency domain. Under the assumption that the correlation function is uniformly continuous, we prove the existence of a unique sequence of spectral measures, which coincide with the restrictions to certain subdiagonals of the spectral measure in the strongly harmonizable case. Moreover, the off-diagonal measures are absolutely continuous with respect to the diagonal measure. As a consequence, for strongly harmonizable scalar improper almost cyclostationary processes, we obtain representation formulas for the components of the complementary spectral measure and the off-diagonal components of the spectral measure, in terms of the diagonal component of the spectral measure. We apply these results to analytic signals, which produces sufficient conditions for propriety for almost cyclostationary analytic signals.

Published in:

Information Theory, IEEE Transactions on  (Volume:54 ,  Issue: 4 )

Date of Publication:

April 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.