By Topic

Discrete-Input Two-Dimensional Gaussian Channels With Memory: Estimation and Information Rates Via Graphical Models and Statistical Mechanics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

Discrete-input two-dimensional (2D) Gaussian channels with memory represent an important class of systems, which appears extensively in communications and storage. In spite of their widespread use, the workings of 2D channels are still very much unknown. In this work, we try to explore their properties from the perspective of estimation theory and information theory. At the heart of our approach is a mapping of a 2D channel to an undirected graphical model, and inferring its a posteriori probabilities (APPs) using generalized belief propagation (GBP). The derived probabilities are shown to be practically accurate, thus enabling optimal maximum a posteriori (MAP) estimation of the transmitted symbols. Also, the Shannon-theoretic information rates are deduced either via the vector-wise Shannon-McMillan-Breiman (SMB) theorem, or via the recently derived symbol-wise Guo-Shamai-Verdu (GSV) theorem. Our approach is also described from the perspective of statistical mechanics, as the graphical model and inference algorithm have their analogues in physics. Our experimental study, based on common channel settings taken from cellular networks and magnetic recording devices, demonstrates that under nontrivial memory conditions, the performance of this fully tractable GBP estimator is almost identical to the performance of the optimal MAP estimator. It also enables a practically accurate simulation-based estimate of the information rate. Rationalization of this excellent performance of GBP in the 2-D Gaussian channel setting is addressed.

Published in:

Information Theory, IEEE Transactions on  (Volume:54 ,  Issue: 4 )