Scheduled System Maintenance:
On April 27th, single article purchases and IEEE account management will be unavailable from 2:00 PM - 4:00 PM ET (18:00 - 20:00 UTC).
We apologize for the inconvenience.
By Topic

The Information-Disturbance Tradeoff and the Continuity of Stinespring's Representation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
3 Author(s)
Kretschmann, D. ; Univ. of Cambridge, Cambridge ; Schlingemann, D. ; Werner, R.F.

Stinespring's dilation theorem is the basic structure theorem for quantum channels: it states that any quantum channel arises from a unitary evolution on a larger system. Here we prove a continuity theorem for Stinespring's dilation: if two quantum channels are close in cb-norm, then it is always possible to find unitary implementations which are close in operator norm, with dimension-independent bounds. This result generalizes Uhlmann's theorem from states to channels and allows to derive a formulation of the information-disturbance tradeoff in terms of quantum channels, as well as a continuity estimate for the no-broadcasting theorem. We briefly discuss further implications for quantum cryptography, thermalization processes, and the black hole information loss puzzle.

Published in:

Information Theory, IEEE Transactions on  (Volume:54 ,  Issue: 4 )