By Topic

The Information-Disturbance Tradeoff and the Continuity of Stinespring's Representation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kretschmann, D. ; Univ. of Cambridge, Cambridge ; Schlingemann, D. ; Werner, R.F.

Stinespring's dilation theorem is the basic structure theorem for quantum channels: it states that any quantum channel arises from a unitary evolution on a larger system. Here we prove a continuity theorem for Stinespring's dilation: if two quantum channels are close in cb-norm, then it is always possible to find unitary implementations which are close in operator norm, with dimension-independent bounds. This result generalizes Uhlmann's theorem from states to channels and allows to derive a formulation of the information-disturbance tradeoff in terms of quantum channels, as well as a continuity estimate for the no-broadcasting theorem. We briefly discuss further implications for quantum cryptography, thermalization processes, and the black hole information loss puzzle.

Published in:

Information Theory, IEEE Transactions on  (Volume:54 ,  Issue: 4 )