By Topic

Tracking the Best Quantizer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
AndrÁs Gyorgy ; Hungarian Acad. of Sci., Budapest ; TamÁs Linder ; GÁbor Lugosi

An algorithm is presented for online prediction that allows to track the best expert efficiently even when the number of experts is exponentially large, provided that the set of experts has a certain additive structure. As an example, we work out the case where each expert is represented by a path in a directed graph and the loss of each expert is the sum of the weights over the edges in the path. These results are then used to construct universal limited-delay schemes for lossy coding of individual sequences. In particular, we consider the problem of tracking the best scalar quantizer that is adaptively matched to the source sequence with piecewise different behavior. A randomized algorithm is presented which can perform, on any source sequence, asymptotically as well as the best scalar quantization algorithm that is matched to the sequence and is allowed to change the employed quantizer for a given number of times. The complexity of the algorithm is quadratic in the sequence length, but at the price of some deterioration in performance, the complexity can be made linear. Analogous results are obtained for sequential multiresolution and multiple description scalar quantization of individual sequences.

Published in:

IEEE Transactions on Information Theory  (Volume:54 ,  Issue: 4 )