Cart (Loading....) | Create Account
Close category search window
 

Automatic Constraint Based Test Generation for Behavioral HDL Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hari, S.K.S. ; Indian Inst. of Technol. Madras, Chennai ; Konda, V.V.R. ; Kamakoti, V. ; Vedula, V.M.
more authors

With the emergence of complex high-performance microprocessors, functional test generation has become a crucial design step. Constraint-based test generation is a well-studied directed behavioral level functional test generation paradigm. The paradigm involves conversion of a given circuit model into a set of constraints and employing constraint solvers to generate tests for it. However, automatic extraction of constraints from a given behavioral hardware design language (HDL) model remained a challenging open problem. This paper proposes an approach for automatic extraction of word-level model constraints from the behavioral verilog HDL description. The scenarios to be tested are also expressed as constraints. The model and the scenario constraints are solved together using an integer solver to arrive at the necessary functional test. The effectiveness of the approach is demonstrated by automatically generating the constraint models for: 1) an exclusive-shared-invalid multiprocessor cache coherency model and 2) the 16-bit DLX-architecture, from their respective Verilog-based behavioral models. Experimental results that generate test vectors for high level scenarios like pipeline hazards, cache miss, etc., spanning over multiple time-frames are presented.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:16 ,  Issue: 4 )

Date of Publication:

April 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.