By Topic

Cryogenic Pull-Down Voltage of Microelectromechanical Switches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Noel, J.G. ; Florida Int. Univ., Miami ; Bogozi, A. ; Vlasov, Y.A. ; Larkins, G.L.

Capacitively shunted microelectromechanical (MEM) switches were designed, fabricated and tested in an earlier work. The switch is composed of a coplanar waveguide (CPW) structure with an Au bridge membrane suspended above a center conductor covered with a BaTiO3 dielectric. The membrane is actuated by electrostatic force acting between the center conductor of the CPW and the membrane when a voltage is applied. We have noted that pull-down voltages for MEM switches always demonstrate an extremely strong temperature dependence when actuated at cryogenic temperature. This paper improves the pull-down voltage prediction of MEM switches at cryogenic temperature using the mechanical properties of the bridge, thin film and substrate materials used in the switch. The theoretical and experimental results of the actuation voltages of these structures as a function of temperature are presented and compared.

Published in:

Microelectromechanical Systems, Journal of  (Volume:17 ,  Issue: 2 )