By Topic

Global Asymptotical Synchronization of Chaotic Lur'e Systems Using Sampled Data: A Linear Matrix Inequality Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jun-Guo Lu ; Dept. of Autom., Shanghai Jiao Tong Univ., Shanghai ; David J. Hill

Sampled-data feedback control for master-slave synchronization schemes that consist of identical chaotic Lur'e systems is studied. Sufficient conditions for global asymptotic synchronization of such chaotic Lur'e systems are obtained using the free-weighting matrix approach and expressed in terms of linear matrix inequalities (LMIs). With the help of the LMI solvers, the sampled-data feedback control law can easily be obtained to globally asymptotically synchronize Lur'e chaotic systems. The effectiveness of the proposed method is finally illustrated via numerical simulations of chaotic Chua's circuits.

Published in:

IEEE Transactions on Circuits and Systems II: Express Briefs  (Volume:55 ,  Issue: 6 )