Cart (Loading....) | Create Account
Close category search window
 

Oblique Projections for Direction-of-Arrival Estimation With Prior Knowledge

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Boyer, R. ; Univ. Paris XI (UPS), Paris ; Bouleux, G.

Estimation of directions-of-arrival (DOA) is an important problem in various applications and a priori knowledge on the source location is sometimes available. To exploit this information, standard methods are based on the orthogonal projection of the steering manifold onto the noise subspace associated with the a priori known DOA. In this paper, we derive and analyze the Cramer-Rao bound associated with this model and in particular we point out the limitations of this approach when the known and unknown DOA are closely spaced and the associated sources are uncorrelated (block-diagonal source covariance). To fill this need, we propose to integrate a priori known locations of several sources into the MUSIC algorithm based on oblique projection of the steering manifold. Finally, we show that the proposed approach is able to almost completely cancel the influence of the known DOA on the unknown ones for block-diagonal source covariance and for sufficient signal-to-noise ratio (SNR).

Published in:

Signal Processing, IEEE Transactions on  (Volume:56 ,  Issue: 4 )

Date of Publication:

April 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.