Cart (Loading....) | Create Account
Close category search window
 

Synthesis of Inference-Based Decentralized Control for Discrete Event Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Takai, S. ; Dept. of Inf. Sci., Kyoto Inst. of Technol., Kyoto ; Kumar, R.

In our past work, we presented a framework for the decentralized control of discrete event systems involving inferencing over ambiguities, about the system state, of various local decision makers. Using the knowledge of the self-ambiguity and those of the others, each local control decision is tagged with a certain ambiguity level (level zero being the minimum and representing no ambiguity). A global control decision is taken to be a "winning" local control decision, i.e., one with a minimum ambiguity level. For the existence of a decentralized supervisor, so that for each controllable event the ambiguity levels of all winning disablement or enablement decisions are bounded by some number N (such a supervisor is termed N-inferring), the notion of N- inference-observability was introduced. When the given specification fails to satisfy the iV-inference-observability property, an iV-inferring supervisor achieving the entire specification does not exist. We first show that the class of iV-inference-observable sublanguages is not closed under union implying that the supremal N- inference-observable sublanguage need not exist. We next provide a technique for synthesizing an N -inferring decentralized supervisor that achieves an N -inference-observable sublanguage of the specification. The sublanguage achieved equals the specification language when the specification itself is iV-inference-observable. A formula for the synthesized sublanguage is also presented. For the special cases of N = 0 and N = 1, the proposed supervisor achieves the same language as those reported in [25], [31] (for N = 0) and [32] (for N = 1). The synthesized supervisor is parameterized by N (the parameter bounding the ambiguity level), and as N is increased, the supervisor becomes strictly more permissive in general. Thus, a user can choose N based on the degree of permissiveness and the degree of computational complexity desired.

Published in:

Automatic Control, IEEE Transactions on  (Volume:53 ,  Issue: 2 )

Date of Publication:

March 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.