Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Modular Control of Discrete-Event Systems With Coalgebra

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Komenda, J. ; Inst. of Math., Czech Acad. of Sci., Brno ; van Schuppen, J.H.

Modular supervisory control of discrete-event systems, where the overall system is a synchronous (parallel) product of subsystems, is considered. The main results of this paper are formulations of sufficient conditions for the compatibility between the synchronous product and various operations stemming from supervisory control as supervised product and supremal controllable sublanguages. These results are generalized to the case of modules with partial observations: e.g., modular computation of supremal normal sublanguages is studied. Coalgebraic techniques based on the coinduction proof principle are used in our main results. Sufficient conditions are derived for modular to equal global control synthesis. An algorithmic procedure for checking the new conditions is proposed and the computational benefit of the modular approach is discussed and illustrated by comparing the time complexity of modular and monolithic computation.

Published in:

Automatic Control, IEEE Transactions on  (Volume:53 ,  Issue: 2 )