By Topic

Monotonic Convergence of Iterative Learning Control for Uncertain Systems Using a Time-Varying Filter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bristow, D.A. ; Dept. of Mech. & Aerosp. Eng., Missouri Univ., Rolla, MO ; Alleyne, A.G.

Iterative learning control (ILC) is a learning technique used to improve the performance of systems that execute the same task multiple times. Learning transient behavior has emerged as an important topic in the design and analysis of ILC systems. In practice, the learning control is often low-pass filtered with a ldquoQ-filterrdquo to prevent transient growth, at the cost of performance. In this note, we consider linear time-invariant, discrete-time, single-input single-output systems, and convert frequency-domain uncertainty models to a time-domain representation for analysis. We then develop robust monotonic convergence conditions, which depend directly on the choice of the Q-filter and are independent of the nominal plant dynamics. This general result is then applied to a class of linear time-varying Q-filters that is particularly suited for precision motion control.

Published in:

Automatic Control, IEEE Transactions on  (Volume:53 ,  Issue: 2 )