By Topic

Fast Full-Search Equivalent Template Matching by Enhanced Bounded Correlation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

We propose a novel algorithm, referred to as enhanced bounded correlation (EBC), that significantly reduces the number of computations required to carry out template matching based on normalized cross correlation (NCC) and yields exactly the same result as the full search algorithm. The algorithm relies on the concept of bounding the matching function: finding an efficiently computable upper bound of the NCC rapidly prunes those candidates that cannot provide a better NCC score with respect to the current best match. In this framework, we apply a succession of increasingly tighter upper bounding functions based on Cauchy-Schwarz inequality. Moreover, by including an online parameter prediction step into EBC, we obtain a parameter free algorithm that, in most cases, affords computational advantages very similar to those attainable by optimal offline parameter tuning. Experimental results show that the proposed algorithm can significantly accelerate a full-search equivalent template matching process and outperforms state-of-the-art methods.

Published in:

IEEE Transactions on Image Processing  (Volume:17 ,  Issue: 4 )