By Topic

SURE-LET Multichannel Image Denoising: Interscale Orthonormal Wavelet Thresholding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Luisier, F. ; Swiss Fed. Inst. of Technol. CH-1015 Lausanne, Lausanne ; Blu, T.

We propose a vector/matrix extension of our denoising algorithm initially developed for grayscale images, in order to efficiently process multichannel (e.g., color) images. This work follows our recently published SURE-LET approach where the denoising algorithm is parameterized as a linear expansion of thresholds (LET) and optimized using Stein's unbiased risk estimate (SURE). The proposed wavelet thresholding function is pointwise and depends on the coefficients of same location in the other channels, as well as on their parents in the coarser wavelet subband. A nonredundant, orthonormal, wavelet transform is first applied to the noisy data, followed by the (subband-dependent) vector-valued thresholding of individual multichannel wavelet coefficients which are finally brought back to the image domain by inverse wavelet transform. Extensive comparisons with the state-of-the-art multiresolution image denoising algorithms indicate that despite being nonredundant, our algorithm matches the quality of the best redundant approaches, while maintaining a high computational efficiency and a low CPU/memory consumption. An online Java demo illustrates these assertions.

Published in:

Image Processing, IEEE Transactions on  (Volume:17 ,  Issue: 4 )