By Topic

A Bayesian Network Approach to Program Generation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hasegawa, Y. ; Dept. of Frontier Inf., Univ. of Tokyo, Kashiwa ; Iba, H.

Genetic programming (GP) is a powerful optimization algorithm that has been applied to a variety of problems. This algorithm can, however, suffer from problems arising from the fact that a crossover, which is a main genetic operator in GP, randomly selects crossover points, and so building blocks may be destroyed by the action of this operator. In recent years, evolutionary algorithms based on probabilistic techniques have been proposed in order to overcome this problem. In the present study, we propose a new program evolution algorithm employing a Bayesian network for generating new individuals. It employs a special chromosome called the expanded parse tree , which significantly reduces the size of the conditional probability table (CPT). Prior prototype tree-based approaches have been faced with the problem of huge CPTs, which not only require significant memory resources, but also many samples in order to construct the Bayesian network. By applying the present approach to three distinct computational experiments, the effectiveness of this new approach for dealing with deceptive problems is demonstrated.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:12 ,  Issue: 6 )