Cart (Loading....) | Create Account
Close category search window

Estimation of Radial Power System Transfer Path Dynamic Parameters Using Synchronized Phasor Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chow, J.H. ; Rensselaer Polytech Inst., Troy ; Chakrabortty, A. ; Vanfretti, L. ; Arcak, M.

This paper develops a measurement-based method for estimating a two-machine reduced model to represent the interarea dynamics of a radial, multimachine power system. The method uses synchronized bus voltage phasor measurements at two buses and the line current on the power transfer path. The innovation is the application of the interarea oscillation components in the voltage variables resulting from disturbances for extrapolating system impedances and inertias beyond the measured buses. Expressions for the amplitudes of the bus voltage and bus frequency oscillations as functions of the location on the transmission path are derived from a small-signal perturbation approach. The reduced model provides approximate response to disturbances on the transfer path and offers an alternative to model reduction techniques based on detailed system models and data.

Published in:

Power Systems, IEEE Transactions on  (Volume:23 ,  Issue: 2 )

Date of Publication:

May 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.