By Topic

Ka-Band SiGe HBT Low Phase Imbalance Differential 3-Bit Variable Gain LNA

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Byung-Wook Min ; Univ. of Michigan, Ann Arbor ; Rebeiz, G.M.

This letter presents the design and implementation of a differential Ka-band variable gain low noise amplifier (VG-LNA) with low insertion phase imbalance. The VG-LNA is based on a 0.12 mum SiGe heterojunction bipolar transistor process, and the gain variation is achieved using bias current steering. The measured VG-LNA gain at 32-34 GHz is 9-20 dB with eight different linear-in-magnitude gain states, and with a noise figure of 3.4-4.3 dB. The measured rms phase imbalance is < 2.5deg at 26-40 GHz for all gain states and this is achieved using a novel compensating resistor in the bias network. The VG-LNA consumes 33 mW (13.5 mA, 2.5 V) and the input 1-dB gain compression point is -27 dBm. The chip size is 0.13 mm2 without pads.

Published in:

Microwave and Wireless Components Letters, IEEE  (Volume:18 ,  Issue: 4 )