By Topic

A High-Power CMOS Switch Using A Novel Adaptive Voltage Swing Distribution Method in Multistack FETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Minsik Ahn ; Georgia Inst. of Technol., Atlanta ; Chang-Ho Lee ; Byung Sung Kim ; Laskar, J.

A high-power CMOS switch using a novel adaptive voltage swing distribution method in a multistack field-effect transistor (FET) scheme is proposed. The proposed adaptive voltage swing distribution method in multistack FETs is very effective in preventing unwanted channel formation with low control voltage supply in OFF-state FETs. This, in turn, increases power-handling capability when a large-signal voltage swing is applied. In the proposed CMOS switch, the behavior of the voltage swing in OFF-state multistack FETs shows a difference with respect to the level of input voltage swing. The characteristics of voltage swing distribution and leakage channel formation in the CMOS switch is fully analyzed with incorporation of the novel adaptive voltage swing distribution method into a three-stacked nMOS Rx switch in a standard 0.18-mum triple-well CMOS process. In addition, linearity of the proposed technique is verified through the measurement data of the single-pole double-throw switches that employ the proposed technique in the Rx switch. Two different types of configurations are implemented and characterized at the Rx switches, which consist of four-stacked nMOS devices, to demonstrate the method of minimizing voltage stress issues on one of the multistacked FETs. Layout consideration was also taken to prevent interference between leakage signals at the substrate. The measured performance of the proposed design shows an input 0.3-dB compression point of 33.5 dBm at 1.9 GHz. To the best of our knowledge, this is the highest power-handling capability of a CMOS switch in a standard CMOS process ever reported. The insertion losses of the Tx and Rx switches are 1.6 and 1.9 dB, respectively, at 1.9 GHz. The isolation of the Tx and Rx switches is around 20 and 30 dB, respectively, at 1.9 GHz.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:56 ,  Issue: 4 )