System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Global Asymptotic Stability of Recurrent Neural Networks With Multiple Time-Varying Delays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Huaguang Zhang ; Northeastern Univ., Shenyang ; Zhanshan Wang ; Derong Liu

In this paper, several sufficient conditions are established for the global asymptotic stability of recurrent neural networks with multiple time-varying delays. The Lyapunov-Krasovskii stability theory for functional differential equations and the linear matrix inequality (LMI) approach are employed in our investigation. The results are shown to be generalizations of some previously published results and are less conservative than existing results. The present results are also applied to recurrent neural networks with constant time delays.

Published in:

Neural Networks, IEEE Transactions on  (Volume:19 ,  Issue: 5 )