Cart (Loading....) | Create Account
Close category search window
 

A Low Power High-Speed 8-Bit Pipelining CLA Design Using Dual-Threshold Voltage Domino Logic

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wang, C.-C. ; Nat. Sun Yat-Sen Univ., Kaohsiung ; Chi-Chun Huang ; Ching-Li Lee ; Tsai-Wen Cheng

A high speed and low power 8-bit carry-lookahead adder using two-phase modified dual-threshold voltage (dual-Vt) domino logic blocks which are arranged in a programmable logical array-like design style with pipelining is presented. The modified domino logic circuits employ dual-transistors and reversed bulk-source biases for reducing subthreshold leakage current when advanced deep submicrometer process is used. Moreover, an nMOS transistor is inserted in the discharging path of the output inverter such that the modified domino logic can be properly applied in a pipeline structure to reduce the power consumption. The addition of two 8-bit binary operands is executed in two cycles. Not only is it proven to be also suitable for long adders, the dynamic power consumption is also drastically reduced by more than 10% by the measurement results on silicon.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:16 ,  Issue: 5 )

Date of Publication:

May 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.