By Topic

Stack Sizing for Optimal Current Drivability in Subthreshold Circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Keane, J. ; Univ. of Minnesota, Minneapolis ; Hanyong Eom ; Tae-Hyoung Kim ; Sapatnekar, S.
more authors

Subthreshold circuit designs have been demonstrated to be a successful alternative when ultra-low power consumption is paramount. However, the characteristics of MOS transistors in the subthreshold region are significantly different from those in strong inversion. This presents new challenges in design optimization, particularly in complex gates with stacks of transistors. In this paper, we present a framework for choosing the optimal transistor stack sizing factors in terms of current drivability for subthreshold designs. We derive a closed-form solution for the correct sizing of transistors in a stack, both in relation to other transistors in the stack, and to a single device with equivalent current drivability. Simulation results show that our framework provides a performance benefit ranging up to more than 10% in certain critical paths.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:16 ,  Issue: 5 )