By Topic

Centralized and Distributed Algorithms for Routing and Weighted Max-Min Fair Bandwidth Allocation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Allalouf, M. ; Dept. of Electr. Eng.-Syst., Tel Aviv Univ., Tel Aviv ; Shavitt, Y.

Given a set of demands between pairs of nodes, we examine the traffic engineering problem of flow routing and fair bandwidth allocation where flows can be split to multiple paths (e.g., MPLS tunnels). This paper presents an algorithm for finding an optimal and global per-commodity max-min fair rate vector in a polynomial number of steps. In addition, we present a fast and novel distributed algorithm where each source router can find the routing and the fair rate allocation for its commodities while keeping the locally optimal max-min fair allocation criteria. The distributed algorithm is a fully polynomial epsilon-approximation (FPTAS) algorithm and is based on a primal-dual alternation technique. We implemented these algorithms to demonstrate its correctness, efficiency, and accuracy.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:16 ,  Issue: 5 )